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Abstract. We study the dynamics of classical and quantum systems undergoing a continuous
measurement of position by schematizing the measurement apparatus with an infinite set of
harmonic oscillators at finite temperature linearly coupled to the measured system. Selective
and non-selective measurement processes are then introduced according to a selection of or
an average over all possible initial configurations of the measurement apparatus. At quantum
level, the selective processes are described by a nonlinear stochastic Schrödinger equation whose
solutions evolve into properly defined coherent states in the case of linear systems. For arbitrary
measured systems, classical behaviour is always recovered in the macroscopic limit.

1. Introduction

A fundamental problem in quantum mechanics is the relationship between the states in the
Hilbert space of a quantum system and the states in the phase space of the corresponding
classical system. This is particularly evident in the case of a superposition of states which
are individually mapped in the macroscopic limit, formally ¯h → 0, into distinguishable
classical states [1, 2].

One important step toward the solution of this problem has been made by recognizing
that a system is never completely isolated by the external world. It has been argued that
an external environment can, after a transient whose duration presumably depends on the
coupling strength, drive the totality of the admissible states of the Hilbert space into those
having macroscopic limit [3–5].

Among all the conceivable situations which require the interaction with an environment,
a peculiar role is played by the measurement processes. Indeed, whenever any physical
property of a system is investigated, an unavoidable coupling with the degrees of freedom of
the measurement apparatus must be invoked. Taking into account these external degrees of
freedom naturally provides a generalization of the von Neumann postulate [6] to continuous
measurements [7–9].

There exists a basic difference between a general environment and one schematizing a
measurement process. According to the Copenhagen interpretation, classical behaviour of
the measurement apparatus has to be assumed before the information is registered by the
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observer [5, 10, 11]. This requirement, although establishing a classical connection between
observer and meter, does not imply a classical behaviour of the observed system since its
interaction with the meter fully preserves quantum features. This aspect may be emphasized
by comparing the coupling of the same measurement apparatus, classically controlled by
the observer, to classical or quantum systems.

This paper is devoted to establishing the relationship between the dynamics of classical
and quantum systems under the influence of a measurement process. We model the effect
of the measurement by allowing the measured system to linearly interact with an infinite set
of harmonic oscillators. The interaction occurs in the configuration space thus representing
a direct measurement of position. Our approach shouldn’t be understood as the modelling
of a particular device, e.g., a cloud chamber in which the oscillators represent molecules
distributed in a medium [12]. Our oscillators are the modes of an interaction field which
reproduces the main features expected in a measurement process, e.g., the wavefunction
collapse, withoutad hoc rules. In contrast to other abstract models [13], however, our
approach has a certain degree of realism, since it allows us to define the reading of the
measurement results operatively.

The oscillators representing the measurement device are chosen at thermal equilibrium
with temperatureT and continuously distributed in frequency with a proper density. These
conditions ensure that, for a chosen initial configuration of the oscillators, the classical
measured system is described by a Markovian Langevin equation with white noise and a
certain relaxation timeγ−1. The constantγ , which fixes the magnitude of the density
of oscillators, represents the strength of the measurement process. In the quantum case, a
further characteristic time of the measurement apparatus, ¯h/kBT , arises. The requirement of
classical behaviour of the meter with respect to the observer implies that a high-temperature
condition must hold, so that this thermal fluctuation time must be much shorter than the
relaxation one. As a consequence, the measured quantum system is described by a stochastic
nonlinear Schr̈odinger equation [14–17].

Details of the derivation of the stochastic equations describing classical and quantum
systems during a measurement process are given in sections 2 and 3, respectively. We
call these processes selective, since they correspond to a single measurement act with
initial conditions of the meter selected from those compatible with the assumed thermal
equilibrium. Alternatively, one can also consider non-selective measurement processes
corresponding to an average over all initial configurations of the meter. In this case, the
dynamics of the classical and quantum measured systems is described by a Fokker–Plank
equation and a trace-preserving positive master equation, respectively. The experimental
results obtained by repeating a measurement on a system always in the same initial state or
performing the same measurement on an ensemble of equally prepared independent systems
is directly comparable with the solution of these non-selective equations. Equivalent results
are predicted by averaging the solutions of the selective equations, classical or quantum,
over the realizations of the corresponding stochastic process.

In section 4 we show how to infer the measurement results by the reading of an
appropriate pointer. Since the oscillators representing the meter are classical with respect
to the observer, the pointer can be defined in terms of the coordinates of these oscillators
which, in turn, reflect the status of the measured system.

As for closed quantum systems, in the presence of a measurement process there also
exists a class of states, namely the coherent ones, which admits, in a proper sense, the ¯h→ 0
limit. These coherent states, explicitly built in section 5, are Gaussian localized states in the
co-moving frame of a measured linear system [15, 18, 19]. In section 6 we show that for
linear systems the solutions of the stochastic Schrödinger equation converge to a coherent
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state localized around a point in the phase space which moves according to a Langevin-
like equation. This equation reduces to the classical one for ¯h → 0. The convergence
into this coherent state occurs in a timescale(h̄/γ kBT )

1/2, the geometric mean of the two
characteristic times associated with the measurement apparatus. This time diverges for an
unmeasured system (γ → 0) and vanishes in the macroscopic limit.

In the case of nonlinear systems, the phase-space localization through convergence into
a coherent state becomes the leading dynamical process as ¯h → 0. This is sufficient to
demonstrate that classical behaviour is always recovered in the macroscopic limit, avoiding
any paradoxical quantum feature.

2. Classical systems

Let us consider a system described by the Hamiltonian

H(p, q, t) = p2

2m
+ V (q, t) (2.1)

and suppose that we want to measure its positionq (q ∈ R, for simplicity). We schematize
the measurement process by the interaction of the system (2.1) with a set of particles of
massM and canonical coordinates(Pn,Qn) via a harmonic potential which, for evident
physical reasons, must depend on the relative distancesQn − q. The Hamiltonian for the
total system is then taken as

Htot = H(p, q, t)+Hm(P,Q− q) (2.2)

where

Hm(P,Q− q) =
∑
n

[
P 2
n

2M
+ Mω

2
n

2
(Qn − q)2

]
(2.3)

represents the measurement apparatus linearly coupled to the measured system. Here and
in the following,Q andP are a shortening for the whole set{Qn} and{Pn}. Note that the
Hamiltonian (2.3) can be interpreted as that of a set of harmonic oscillators with equilibrium
positionsQn = q. Our model is thus reduced to the exactly solvable problem of a system
interacting with a bath of harmonic oscillators [20] but with the difference that the interaction
potential is invariant under space translation. The importance of this invariance in avoiding
the appearance of infinite renormalization potentials has been recently underlined in [21]
in the framework of the classical/quantum Brownian motion. We stress that the long-range
nature of the quadratic potential in (2.3) prevents us from considering a situation in which
the measured system does not interact with the meter, so that our model cannot take into
account the switching-on of the measurement.

At the classical level, the Newton equation for each harmonic oscillator can be solved
explicitly in terms of the functionq(t) and the values of the coordinatesQ′n = Qn(t

′),
P ′n = Pn(t ′) andq ′ = q(t ′) at the initial timet ′

Qn(t) = (Q′n − q ′) cos[ωn(t − t ′)] + P ′n
Mωn

sin[ωn(t − t ′)]

+q(t)−
∫ t

t ′
ds cos[ωn(t − s)] q̇(s). (2.4)

We will also assumep(t ′) = p′. When this solution is inserted in the Newton equation for
the measured system, the following equation forq(t) is obtained:

mq̈(t)+
∫ t

t ′
ds 0(t − s)q̇(s)+ ∂qV (q(t), t) = 5(t) (2.5)
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where

0(t − s) =
∑
n

Mω2
n cos[ωn(t − s)] (2.6)

and

5(t) =
∑
n

Mω2
n

{
(Q′n − q ′) cos[ωn(t − t ′)] + P ′n

Mωn
sin[ωn(t − t ′)]

}
. (2.7)

In the limit of an infinite number of oscillators, if the corresponding initial conditionsQ′ and
P ′ are a realization of a stochastic process in the phase space, then5(t) is a realization of a
stochastic process in time. If, as we will suppose, the oscillators are at thermal equilibrium
with temperatureT , the initial conditions to be considered are typical realizations of the
stochastic process corresponding to the equilibrium Gibbs measure [22]. In this case, the
following statistical properties for5(t) hold:

5(t) = 0 5(t)5(s) = kBT 0(t − s) (2.8)

where

· · · =
∫

dP ′ dQ′ · · ·exp
(−Hm(P ′,Q′ − q ′)/kBT

)∫
dP ′ dQ′ exp

(−Hm(P ′,Q′ − q ′)/kBT
) . (2.9)

Note that the initial conditions corresponding to the definition (2.9) respect the space
translation symmetry of the HamiltonianHm thus implying, in agreement with the long-
range nature of the quadratic potential, a correlation between the coordinatesQ′ andq ′.

The friction term in the stochastic differential equation (2.5) contains memory effects
which are an unessential complication in our context. A Markovian evolution can be
obtained by choosing an appropriate continuous distribution of the frequencies{ωn}. For a
frequency density

dN

dω
= 2mγ

πMω2
θ(�− ω) (2.10)

whereθ(x) is 1 for x > 0 and 0 otherwise, we obtain

0(t − s) =
∫ ∞

0
dω

dN

dω
Mω2 cos[ω(t − s)] = 2mγ

sin[�(t − s)]
π(t − s) ' 2mγδ(t − s). (2.11)

The approximation holds fort − s � �−1. For�−1� τ , whereτ is the fastest time scale
at which the measured system evolves,5(t) can be approximated with a white noise and
equation (2.5) rewritten as

dp(t) = −[γp(t)+ ∂qV (q(t), t)] dt +
√

2mγkBT dw(t) (2.12)

dq(t) = p(t)

m
dt. (2.13)

Here, we introduced the Wiener process dw(t) = (2mγkBT )
−1/25(t) dt having zero

average,dw(t) = 0, and standard scaling,dw(t) dw(t) = dt . Note that the friction
coefficient γ and the temperatureT completely define the fluctuation and dissipation
phenomena induced by the interaction with the measurement apparatus.

Equations (2.12) and (2.13) describe the evolution of the system during a selective
measurement, i.e. a measurement in which a realization of the stochastic processp(t), q(t) is
selected according to certain initial conditions of the measurement apparatus. Alternatively,
one can consider a non-selective measurement corresponding to an average over all possible
realizations of the stochastic process. In this case, the measured system is described by
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a probability densityW(p, q, t) which is determined by the Fokker–Plank equation [23]
associated with (2.12) and (2.13):

∂tW(p, q, t) =
[
− p
m
∂q + ∂qV (q, t)∂p + ∂p

(
γp +mγkBT ∂p

)]
W(p, q, t) (2.14)

with initial conditionsW(p, q, t ′) = δ(p−p′)δ(q−q ′). The probability densityW(p, q, t)
allows us to directly evaluate averages of any function ofp(t) andq(t). In particular, for
the position we have the average value

q(t) =
∫

dp dq W(p, q, t) q (2.15)

with a variance

1q2(t) =
∫

dp dq W(p, q, t)
[
q − q(t) ]2 = q(t)2− q(t)2. (2.16)

For γ → 0 the effect of the measurement vanishes. In this case, equation (2.14) becomes
the Liouville equation for the isolated system (2.1), the average value (2.15) gives the
corresponding time-dependent solution, and the variance (2.16) vanishes.

3. Quantum systems

At the quantum level, the measured system is conveniently described by a reduced density
matrix obtained by tracing out the coordinates of the measurement apparatus in the total
density matrix

%(q1, q2, t) =
∫

dQ %tot(q1,Q, q2,Q, t). (3.1)

We assume that at the initial timet ′ the oscillators of the measurement apparatus are at
thermal equilibrium with temperatureT and the total density matrix is factorized as

%tot(q
′
1,Q

′
1, q
′
2,Q

′
2, t
′) = %(q ′1, q ′2, t ′)%m(δQ′1, δQ′2, t ′) (3.2)

where

%m(δQ
′
1, δQ

′
2, t
′) =

∏
n

√
Mωn

πh̄
tanh

(
h̄ωn

2kBT

)

× exp

[
− Mωn

2h̄

(
δQ′21n + δQ′22n

tanh(h̄ωn/kBT )
− 2δQ′1nδQ

′
2n

sinh(h̄ωn/kBT )

)]
(3.3)

with δQ′1 = Q′1 − Q′eq and δQ′2 = Q′2 − Q′eq. The requirement of translational and time
reversal invariance [21] implies

Q′eq=
q ′1+ q ′2

2
. (3.4)

Analogously to the classical case, this choice corresponds to an initial condition (3.2)
factorized but correlated.

At a later timet , the reduced density matrix is obtained through a Green function

%(q1, q2, t) =
∫

dq ′1 dq ′2 G(q1, q2, t; q ′1, q ′2, t ′)%(q ′1, q ′2, t ′) (3.5)
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whose path-integral representation

G(q1, q2, t; q ′1, q ′2, t ′) =
∫

d[p1] d[q1]q1,t

q ′1,t ′

∫
d[p2] d[q2]q2,t

q ′2,t ′

× exp

{
i

h̄
S[p1, q1] − i

h̄
S[p2, q2] − Z[p1, q1, p2, q2]

}
(3.6)

is the free evolution of the measured system modified by the influence functional

exp{−Z[p1, q1, p2, q2]} =
∫

dQ
∫

dQ′1 dQ′2

∫
d[P1] d[Q1]Q,t

Q′1,t ′

∫
d[P2] d[Q2]Q,t

Q′2,t ′

× exp

{
i

h̄
Sm[P1,Q1− q1] − i

h̄
Sm[P2,Q2− q2]

}
%m(δQ

′
1, δQ

′
2, t
′). (3.7)

Here,S[p, q] andSm[P,Q−q] are the classical actions corresponding to the Hamiltonians
H andHm, respectively:

S[p, q] =
∫ t

t ′
ds
[
p(s)q̇(s)−H(p, q, s)] (3.8)

Sm[P,Q− q] =
∫ t

t ′
ds
[
P(s)Q̇(s)−Hm(P,Q− q, s)

]
. (3.9)

The functional measure with boundary conditionsq(t ′) = q ′ andq(t) = q is obtained by
slicing the interval [t ′, t ] at times t (n) = t ′ + (t − t ′)n/N , n = 1, . . . , N , and taking the
N →∞ limit. All time integrals can be approximated by sums:∫ t

t ′
ds f (p, q, s) =

N∑
n=1

∫ t (n)

t (n−1)
ds f (p, q, s) ' t − t ′

N

N∑
n=1

f
(
p(n), q(n), t (n)

)
(3.10)

wherep(n) = p(t(n)), q(n) = q(t(n)) and

d[p] d[q]q,tq ′,t ′ = lim
N→∞

N∏
n=1

dp(n)

2πh̄

N−1∏
n=1

dq(n). (3.11)

Analogous relations hold for d[P ] d[Q]Q,tQ′,t ′ .
The influence functional (3.7) contains only Gaussian integrals and can be evaluated

exactly. The result is [24]

Z[p1, q1, p2, q2] =
∫ t

t ′
ds
∫ s

t ′
du
[
q1(s)− q2(s)

]{
3(s − u)[q1(u)− q2(u)

]
+ i

2mh̄
0(s − u)[p1(u)+ p2(u)

]}
(3.12)

where

3(s − u) = M

2h̄

∑
n

ω3
n coth

(
h̄ωn

2kBT

)
cos[ωn(s − u)] (3.13)

and0(s − u), defined by (2.6), are called fluctuation and dissipation kernels, respectively
[20]. The double time integral which appears in equation (3.12) is responsible for memory
effects which break the semi-group property of the evolution of the measured system, i.e.

G(q1, q2, t; q ′1, q ′2, t ′) =
∫

dq ′′1 dq ′′2 G(q1, q2, t; q ′′1 , q ′′2 , t ′′) G(q ′′1 , q ′′2 , t ′′; q ′1, q ′2, t ′) (3.14)
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for t ′ < t ′′ < t . Two are the sources of this non-Markovian behaviour. In the dissipation
kernel0, the origin of memory effects is classical and Markovian behaviour is obtained
if one assumes the frequency distribution (2.10) with�−1 � τ . In the fluctuation kernel
3, the assumption of these conditions does not remove the memory effects due to the
quantum behaviour of the oscillators in the thermal bath. However, in the framework
of a theory of measurement processes, the measurement apparatus, which is an interface
between the observer (classical) and the measured system (quantum), must have classical
behaviour with respect to the former in order to avoid paradoxical features [5]. In the
present model, the nature of the interaction between the measurement apparatus and the
external environment is fixed by the ratios ¯hωn/kBT so that the requirement of classical
behaviour of the measurement apparatus with respect to the observer imposes the condition
kBT � h̄�.

For h̄/kBT � �−1 � τ and frequency distribution (2.10), equation (3.12) can be
approximated (see appendix A) by

Z[p1, q1, p2, q2] =
∫ t

t ′
ds

{
mγkBT

h̄2

[
q1(s)− q2(s)

]2+ iγ

2h̄

[
q1(s)− q2(s)

][
p1(s)+ p2(s)

]}
.

(3.15)

A differential equation for the reduced density matrix operator can be then derived with
standard methods. According to equation (3.15) and using the path-integral representation
of G, we have

%(q1, q2, t + dt) =
∫

dq ′1 dq ′2 G(q1, q2, t + dt; q ′1, q ′2, t) %(q ′1, q ′2, t)

=
∫

dp1

2πh̄
dq ′1

∫
dp2

2πh̄
dq ′2 exp

{
i

h̄
p1
(
q1− q ′1

)− i

h̄
p2
(
q2− q ′2

)
+
[
− i

h̄
H
(
p1, q1, t

)+ i

h̄
H
(
p2, q2, t

)− mγkBT

h̄2

(
q1− q2

)2

− iγ

2h̄

(
q1− q2

)(
p1+ p2

)]
dt

}
%
(
q ′1, q

′
2, t
)
. (3.16)

By using the identity〈q|p〉 = (2πh̄)−1/2 exp(ipq/h̄) and expanding the exponential
containing the infinitesimal time dt , the above equation can be cast in the form

〈q1|%̂(t + dt)|q2〉 = 〈q1|%̂(t)|q2〉 + 〈q1| d

dt
%̂(t)|q2〉 (3.17)

where
d

dt
%̂(t) = − i

h̄

[
Ĥ (p̂, q̂, t), %̂(t)

]− mγkBT

h̄2

[
q̂,
[
q̂, %̂(t)

]]− iγ

2h̄

[
q̂,
{
p̂, %̂(t)

}]
. (3.18)

Note that d[Tr̂%(t)]/dt = 0 so that we can assume Tr%̂(t) = 1.
Equation (3.18) describes the evolution of the measured system with initial conditions

of the oscillator system statistically distributed according to equation (3.3). This is a
non-selective measurement process to be compared with the classical one described by
equation (2.14).

The quantum–classical correspondence of non-selective measurements can be extended
to selective processes. Introducing

A(p(t), q(t)) =
√

2mγkBT

h̄2 q(t)+ i

√
γ

8mkBT
p(t) (3.19)
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B(p(t)) =
√

γ

8mkBT
p(t) (3.20)

equation (3.15) can be rewritten as

Z =
∫ t

t ′
ds

[
iγ

2h̄
(q1p1− q2p2)+ 1

2
A1A

∗
1 +

1

2
A2A

∗
2 − A1A

∗
2 −

1

2
(B1− B2)

2

]
=
∫ t

t ′
ds

[
iγ

2h̄
(q1p1− q2p2)+ 1

2
A1A

∗
1 +

1

2
A2A

∗
2 −

1

2
(A1− a)2

− 1

2
(A∗2 − a∗)2+ aa∗ − A1a

∗ − A∗2a +
1

2
(A1− a − A∗2 + a∗)2

− 1

2
(B1− b − B2+ b)2

]
(3.21)

whereAi andBi stand forA(pi, qi) andB(pi), i = 1, 2, anda(t) andb(t) are two arbitrary
functions, which are complex and real, respectively. The coupling between the components 1
and 2 of the system coordinates given by the last two squares of the exponential can be
eliminated in terms of two functional integrations over white real noises by means of the
identities

exp

[
−1

2

∫ t

t ′
ds (A1− a − A∗2 + a∗)2

]
=
∫

d[ξ ] exp

{
−
∫ t

t ′
ds
[
(A1− a)2+ (A∗2 − a∗)2

− (A1− a)ξ − (A∗2 − a∗)ξ
]}

(3.22)

and

exp

[
1

2

∫ t

t ′
ds (B1− b − B2+ b)2

]
=
∫

d[η] exp

{∫ t

t ′
ds
[
(B1− b)2+ (B2− b)2

+ i(B1− b)η + i(B2− b)η
]}
. (3.23)

Note that the above functional integration measures are Gaussian:

d[ξ ] = lim
N→∞

N∏
n=1

dξ (n)
√
t − t ′
2πN

exp

(
− (t − t

′)ξ (n)2

2N

)
(3.24)

so that

ξ(t) =
∫

d[ξ ] ξ(t) = 0 ξ(t)ξ(s) =
∫

d[ξ ] ξ(t) ξ(s) = δ(t − s) (3.25)

and analogously forη. The two-particle Green function (3.6) can be then rewritten in terms
of a couple of one-particle Green functions

G(q1, q2, t; q ′1, q ′2, t ′) =
∫

d[ξ ] d[η] G+[ξη](q1, t; q ′1, t ′)G−[ξη](q2, t; q ′2, t ′)∗ (3.26)

where

G±[ξη](q, t; q ′, t ′) =
∫

d[p] d[q]q,tq ′,t ′ exp

{
i

h̄
S[p, q] − iγ

2h̄

∫ t

t ′
ds pq

+
∫ t

t ′
ds

[
− 1

2
AA∗ − 1

2
(A− a)2− 1

2
aa∗ + Aa∗ + (A− a)ξ

+(B − b)2± i(B − b)η
]}
. (3.27)
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Assuming that the system is initially in a pure state, i.e.%̂(t ′) = |ψ(t ′)〉〈ψ(t ′)|, at a later
time t the reduced density matrix operator is expressed as a functional integral over pure
states

%̂(t) =
∫

d[ξ ] d[η] |ψ+[ξη](t)〉〈ψ−[ξη](t)| (3.28)

obtained by propagating|ψ(t ′)〉 with G±[ξη] :

〈q|ψ±[ξη](t)〉 =
∫

dq ′ G±[ξη](q, t; q ′, t ′) 〈q ′|ψ(t ′)〉. (3.29)

An evolution equation for the states|ψ±[ξη](t)〉 can be obtained by writing the explicit
form of the propagatorsG±[ξη] between the timest and t + dt

〈q|ψ±[ξη](t + dt)〉 =
∫

dq ′ G±[ξη](q, t + dt; q ′, t) 〈q ′|ψ(t)〉

=
∫

dp

2πh̄
dq ′ exp

{
i

h̄
p
(
q − q ′)+ [− i

h̄
H
(
p, q, t

)− iγ

2h̄
pq

− 1

2
A(p, q)A(p, q)∗ − 1

2
[A(p, q)− a(t)]2− 1

2
a(t)a(t)∗ + A(p, q)a(t)∗

+ [A(p, q)− a(t)]ξ(t)+ [B(p)− b(t)]2± i[B(p)− b(t)]η(t)
]

dt

}
×〈q ′|ψ±[ξη](t)〉. (3.30)

By using the identity〈q|p〉 = (2πh̄)−1/2 exp(ipq/h̄) and expanding the exponential
containing the Wiener processes dwξ(t) = ξ(t) dt and dwη(t) = η(t) dt according to the Ito
rule [25], we obtain the following stochastic differential equation†:

d|ψ±[ξη](t)〉 = −
i

h̄

[
Ĥ (p̂, q̂, t)+ γ

4
(p̂q̂ + q̂p̂)

]
|ψ±[ξη](t)〉 dt

− 1

2

[
Â†Â+ a(t)∗a(t)− 2a(t)∗Â

]|ψ±[ξη](t)〉 dt

+ [Â− a(t)]|ψ±[ξη](t)〉 dwξ(t)+
1

2

[
B̂ − b(t)]2|ψ±[ξη](t)〉 dt

±i
[
B̂ − b(t)]|ψ±[ξη](t)〉 dwη(t). (3.31)

The normalization condition for the reduced density matrix operator

Tr %̂(t) =
∫

d[ξ ] d[η] 〈ψ−[ξη](t)|ψ+[ξη](t)〉 = 1
∫

d[ξ ] d[η] = 1 (3.32)

is satisfied by imposing〈ψ−[ξη](t)|ψ+[ξη](t)〉 = 1. This fixes the arbitrary functionsa(t) and
b(t). Indeed, the requirement that the Ito differential

d〈ψ−[ξη](t)|ψ+[ξη](t)〉 = 〈ψ−[ξη](t)|Â− a(t)+ Â† − a∗(t)|ψ+[ξη](t)〉 dwξ(t)

+ 2i〈ψ−[ξη](t)|B̂ − b(t)|ψ+[ξη](t)〉 dwη(t) (3.33)

† Note that〈q|p〉(−(iγ /2h̄)qp − 1
2A(p, q)A(p, q)

∗) = 〈q| − (iγ /4h̄)(q̂p̂ + p̂q̂)− 1
2Â
†Â|p〉.
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vanishes implies

a(t) = 〈ψ−[ξη](t)|Â|ψ+[ξη](t)〉

=
√

2mγkBT

h̄2 〈ψ−[ξη](t)|q̂|ψ+[ξη](t)〉 + i

√
γ

8mkBT
〈ψ−[ξη](t)|p̂|ψ+[ξη](t)〉 (3.34)

b(t) = 〈ψ−[ξη](t)|B̂|ψ+[ξη](t)〉 =
√

γ

8mkBT
〈ψ−[ξη](t)|p̂|ψ+[ξη](t)〉. (3.35)

The appearance of two different Green functionsG±[ξη] in (3.28) possibly introduces
a violation of positivity in %̂(t). This unphysical property is reflected in the anomalous
definition of expectation values of the Hermitian operators, e.g.,〈ψ−[ξη](t)|q̂|ψ+[ξη](t)〉, which
may be complex. The problem is mathematically related to the presence of theB terms
in (3.21). However, due to the high-temperature condition ¯h/kBT � τ we haveB � A

(see appendix A for details) and the last square in (3.21) can be neglected with respect to
the last but one. In this case, equation (3.18) becomes

d

dt
%̂(t) = − i

h̄

[
Ĥ (p̂, q̂, t), %̂(t)

]− mγkBT

h̄2

[
q̂,
[
q̂, %̂(t)

]]− iγ

2h̄

[
q̂,
{
p̂, %̂(t)

}]
− γ

16mkBT

[
p̂,
[
p̂, %̂(t)

]]
= − i

h̄

[
Ĥ (p̂, q̂, t)+ γ

4
(p̂q̂ + q̂p̂), %̂(t)

]
+ 1

2

[
Â%̂(t), Â†

]
+1

2

[
Â, %̂(t)Â†

]
. (3.36)

This equation is of Lindblad class and provides a (completely) positive evolution of
%̂(t) [26]. The reduced density matrix operator can be decomposed in terms of a single
state|ψ[ξ ](t)〉 associated with the Green functionG[ξ ] obtained by neglecting theB terms
in |ψ±[ξη](t)〉 andG±[ξη] , respectively. Note the disappearance of theη noise. Equation (3.31)
becomes the norm-preserving stochastic Schrödinger equation

d|ψ[ξ ](t)〉 = − i

h̄

[
Ĥ (p̂, q̂, t)+ γ

4
(p̂q̂ + q̂p̂)

]
|ψ[ξ ](t)〉 dt

− 1

2

[
Â†Â+ a(t)∗a(t)− 2a(t)∗Â

]|ψ[ξ ](t)〉 dt

+[Â− a(t)]|ψ[ξ ](t)〉 dwξ(t) (3.37)

with a(t) = 〈ψ[ξ ](t)|Â|ψ[ξ ](t)〉.
Equation (3.37) describes the evolution of the measured system for a realization of the

stochastic processes|ψ[ξ ](t)〉. This is a selective measurement process, which is related the
non-selective one by the relationship

ρ̂(t) = |ψ[ξ ](t)〉〈ψ[ξ ](t)| =
∫

d[ξ ] |ψ[ξ ](t)〉〈ψ[ξ ](t)|. (3.38)

The quantum expectation values of the observables, e.g.q(t) = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉, are
stochastic processes with average value

q(t) =
∫

d[ξ ] 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉 (3.39)
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and variance

1q2(t) =
∫

d[ξ ] 〈ψ[ξ ](t)|
[
q̂ − q(t) ]2|ψ[ξ ](t)〉. (3.40)

According to equation (3.38), these average quantities can be also directly computed by
considering the non-selective measurement process described by equation (3.36)

q(t) = Tr
[
%̂(t)q̂

] = ∫ dp dq W(p, q, t) q (3.41)

1q2(t) = Tr
{
%̂(t)

[
q̂ − q(t) ]2} = ∫ dp dq W(p, q, t)

[
q − q(t) ]2

. (3.42)

The last expressions, which are formally identical to the classical equations (2.15) and (2.16),
have been obtained by introducing the Wigner functionW(p, q, t) through the relation
%(q, q, t) = ∫ dpW(p, q, t). For γ → 0, the effect of the measurement vanishes. In this
case, equation (3.37) becomes the Schrödinger equation for the isolated system and the
variance (3.42) reduces to the standard quantum mechanical expression.

Finally, we show that the von Neumann collapse theory is recovered forγ → ∞ and
T → ∞ with T γ−1 constant. In this limit, we must identify the shortest time scaleτ

of the classical system withγ−1 and the conditionT γ−1 constant allows the inequality
h̄/kBT � �−1� τ to be satisfied always. At timet = t ′ + τ , equations (3.36) and (3.37)
give

%(q1, q2, t
′ + τ) ' exp

[− 1
2κτ(q1− q2)

2
]
%(q1, q2, t

′) (3.43)

ψξ ′(q, t
′ + τ) ' exp

[
−κτ

(
q − q ′ − ξ ′

2
√
κ

)2]
exp

(
ξ ′2τ

4

)
ψ(q, t ′) (3.44)

whereκ = 2mγkBT/h̄
2, ξ ′ = ξ(t ′) andq ′ = q(t ′). For T γ−1 constant andτ = γ−1→ 0,

equations (3.43) and (3.44) provide an instantaneous diagonalization of the reduced density
matrix and an instantaneous collapse of the wavefunction into the eigenfunction ofq̂

corresponding to the eigenvalueq ′ + ξ ′/2√κ. The normalization factor in (3.44) is such
that the quantum expectation values at timet ′+τ , when averaged over the noise realizations
ξ ′, coincide with the quantum expectation values at timet ′. For instance, we have

〈ψξ ′(t ′ + τ)|q̂|ψξ ′(t ′ + τ)〉 =
∫

dξ ′
√
τ

2π
exp

(
−ξ
′2τ
2

)∫
dq q

∣∣ψξ ′(q, t ′ + τ)∣∣2
=
∫

dq q|ψ(q, t ′)|2 (3.45)

which is the result expected on the basis of the von Neumann postulate, namely: in a
selective measurement of position at timet ′, the probability that the state|ψ(t ′)〉 collapses
into the eigenstate|q〉 is |〈q|ψ(t ′)〉|2.

4. Measurement results

In the previous sections, we have seen how the evolution of a system, classical or quantum,
is influenced by coupling its coordinate to those of infinitely many linear oscillators. We
called this process a measurement of position in agreement with the fact that in a proper
limit the von Neumann collapse theory can be recovered from the resulting equations. We
now specify how the properties of the measured system can be operatively read by the
observer.



7396 C Presilla et al

From the point of view of the observer the linear oscillators of the meter always have
classical features so that their coordinates can be directly taken as pointers of the meter
itself. Consider, for example, a pointer whose valueR(t) is defined as

R(t) =
∫

ds
∑
n

ζn(t − s)Qn(s). (4.1)

During a single measurement, i.e. in a selective process,R(t) is a stochastic variable. We
would like to choose the response functionsζn(t − s) in order that the statistical properties
of R(t) over the ensemble of all possible measurements coincide with or, at least, allow us
to recover, the non-selective properties of the measured system. For instance, we could ask
that the average measurement result

R(t) =
∫

ds
∑
n

ζn(t − s)Qn(s) (4.2)

and its variance

1R2(t) =
∫

ds
∑
n

ζn(t − s)
[
Qn(s)2−Qn(s)

2 ]
(4.3)

correspond to the quantities (2.15) and (2.16) in the case of a classical system or those
(3.41) and (3.42) in the case a quantum one.

In the classical case, equation (2.4) provides an explicit expression of the oscillator
coordinates. By using the property�−1� τ , we see that forωn ∼ � we can find a period
λ−1 much shorter than the fastest classical time and much longer than the inverse of the
oscillator frequency, so that the average ofQn(t) in this period coincides withq(t). With
the choiceζn(t) = λ exp(−λt)δωn−� and using the definition (2.9) we then have

R(t) = q(t) (4.4)

and

1R2(t) = 1q2(t)+ `2. (4.5)

The pointer variance is the sum of the variance1q2(t) of the measured system and the
resolution of the measurement apparatus

`2 = kBT

M�2
. (4.6)

The term`2 represents a systematic error of the measurement and can, in principle, be
subtracted.

The above results can be derived in an alternative way. Consider the general definition
of the moments

Qn(t) =
∫

dp dq dP dQ Wtot(p, q, P,Q, t)Qn (4.7)

Qn(t)2 =
∫

dp dq dP dQ Wtot(p, q, P,Q, t)Q
2
n. (4.8)

Here,Wtot(p, q, P,Q, t) is the probability density solution of the Liouville equation for the
total system with initial conditions

Wtot(p, q, P,Q, t
′) = δ(p − p′)δ(q − q ′) exp

(−Hm(P ′,Q′ − q ′)/kBT
)∫

dQ′ dP ′ exp
(−Hm(P ′,Q′ − q ′)/kBT

) . (4.9)

The oscillators with frequencyωn ∼ � approach the thermal equilibrium around the
instantaneous value of the measured coordinate on a time scale much shorter than a
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characteristic periodλ−1 with �−1 � λ−1 � τ . For these oscillators the time average
of the moments (4.7) and (4.8) over a periodλ−1 can be approximated by inserting the
following adiabatic expression for the total probability density in the same equations (4.7)
and (4.8):

Wtot(p, q, P,Q, t) ' W(p, q, t)
exp

(−Hm(P,Q− q(t))/kBT
)∫

dQ dP exp
(−Hm(P,Q− q(t))/kBT

) (4.10)

whereW(p, q, t) is the solution of (2.14). Equations (4.4) and (4.5) are then obtained by
evaluating the Gaussian integrals in (4.7) and (4.8).

The last approach also applies formally at the quantum level by interpreting theW ’s as
Wigner functions. The adiabatic approximation (4.10) becomes

Wtot(p, q, P,Q, t) ' W(p, q, t)Wm(P,Q− q(t)) (4.11)

whereW(p, q, t) is the Wigner function associated witĥ%(t) and

Wm(P,Q− q(t)) =
∏
n

tanh(h̄ωn/2kBT
)

πh̄
exp

{
− tanh

(
h̄ωn

2kBT

)

×
[
P 2
n

h̄Mωn
+ Mωn

h̄

(
Qn − q(t)

)2
]}

(4.12)

is the Wigner function associated with the density matrix (3.3), withQeq = q(t). Here,
q(t) is the quantum expectation value ofq̂ in the state|ψ[ξ ](t)〉. Due to the condition
kBT � h̄�, the above expression reduces to the classical distribution

Wm(P,Q− q(t)) =
∏
n

ωn

2πkBT
exp

{
−
[
P 2
n

2M
+ Mω

2
n

2

(
Qn − q(t)

)2
]

1

kBT

}
(4.13)

so that equations (4.4) and (4.5) still hold with the same resolution` of the measurement
apparatus.

5. The h̄→ 0 limit: definition of coherent states

The dynamics of a closed quantum system reduces to the classical dynamics in the ¯h→ 0
limit only if the system is prepared in appropriate states. The coherent states defined as the
ground state of the displaced harmonic oscillator

|p′q ′〉 = e−(i/h̄)q
′p̂ e(i/h̄)p

′q̂ |φ0〉 (5.1)

where|φ0〉 is the ground state of the undisplaced oscillator, are a well known example [27].
These states provide a convenient representation for studying the ¯h→ 0 limit regardless of
the nature of the Hamiltonian which may not preserve their form [28].

In the case of the measurement model discussed here, it is possible to find states which
are localized and stationary in the co-moving frame of the measured system and play the
role of the ground state|φ0〉 in equation (5.1). A first example of these states was given
in [15, 18] for a free particle evolving according to the dissipationless equation (A.6). A
generalization valid in the case of a harmonic oscillator described by (3.37) has recently
been provided in [19]. Here, we derive the expression of the coherent states for a general
linear system with constant proper frequency undergoing the selective measurement process
of (3.37). Then, we discuss the recovering of the classical limit in selective and non-selective
measurement processes on arbitrary systems which are prepared in such states.
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During a selective measurement, the quantum system is described by a state|ψ[ξ ](t)〉
which evolves in a specified rest-frame according to (3.37). In analogy with (5.1), we seek
solutions of (3.37) of the form

|ψ[ξ ](t)〉 = e−(i/h̄)q(t)p̂ e(i/h̄)p(t)q̂ e−(i/h̄)ϕ(t)|φ〉 (5.2)

wherep(t) = 〈ψ[ξ ](t)|p̂|ψ[ξ ](t)〉 and q(t) = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉. The co-moving state|φ〉
is assumed constant so that the solutions (5.2) depend on the noiseξ(t) only through the
expectation valuesp(t) andq(t) and the actionϕ(t). By inverting the transformation (5.2)
and imposing the requirement that the change of|φ〉 in a time dt vanishes, we obtain

e(i/h̄)[ϕ(t)+dϕ(t)] e−(i/h̄)[p(t)+dp(t)]q̂ e(i/h̄)[q(t)+dq(t)]p̂
[|ψ[ξ ](t)〉 + d|ψ[ξ ](t)〉

]− |φ〉 = 0. (5.3)

The differential d|ψ[ξ ](t)〉 is given by equation (3.37). The same equation (3.37) allows the
evaluation of

dp(t) = −[γp(t)+ 〈ψ[ξ ](t)|∂qV̂ (q̂, t)|ψ[ξ ](t)〉
]

dt + 2
√
κσ 2

pq dwξ(t) (5.4)

and

dq(t) = p(t)

m
dt +

(
2
√
κσ 2

q −
γ

2
√
κ

)
dwξ(t) (5.5)

where

σ 2
q = 〈ψ[ξ ](t)|q̂2|ψ[ξ ](t)〉 − 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉2 = 〈φ|q̂2|φ〉 (5.6)

and

σ 2
pq = 1

2〈ψ[ξ ](t)|p̂q̂ + q̂p̂|ψ[ξ ](t)〉 − 〈ψ[ξ ](t)|p̂|ψ[ξ ](t)〉〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉

= 1
2〈φ|p̂q̂ + q̂p̂|φ〉 (5.7)

are the constant variances associated with the states (5.2) andκ = 2mγkBT/h̄
2. The

expectation value of the force operator which appears in (5.4) can be expressed in terms of
the co-moving state|φ〉 by a translationq̂ → q̂ + q(t):

〈ψ[ξ ](t)|∂qV̂ (q̂, t)|ψ[ξ ](t)〉 = 〈φ|∂qV̂ (q̂ + q(t), t)|φ〉. (5.8)

Finally, we write the differential of the actionϕ(t) in terms of two coefficientsµ(t) and
ν(t) to be determined later

dϕ(t) = µ(t) dt + ν(t) dwξ(t). (5.9)

By expanding the exponentials and using the Ito rule, equation (5.3) can be rewritten as[
1̂+ F̂ dwξ(t)+ Ĝ dt

]|φ〉 − |φ〉 = 0 (5.10)

which is equivalent toF̂ |φ〉 = 0 andĜ|φ〉 = 0. In general, the operatorŝF and Ĝ will
depend on time through the expectation valuesp(t) and q(t) and the actionϕ(t), so that
these equations cannot be satisfied with a constant|φ〉. However, we can try to makêF
andĜ time independent with a proper choice of the coefficientsµ(t) andν(t). In the case
of F̂ , we have

F̂ = √κ
[(

1− 2i

h̄
σ 2
pq

)
q̂ + 2i

h̄
σ 2
q p̂

]
+ i

h̄

[
ν(t)+ p(t)

(
2
√
κσ 2

q −
γ

2
√
κ

)]
(5.11)

and this becomes time independent with the choice

ν(t) = −p(t)
(

2
√
κσ 2

q −
γ

2
√
κ

)
. (5.12)
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The corresponding equation̂F |φ〉 = 0 has the unique normalized solution

φ(q) = 〈q|φ〉 = (2πσ 2
q

)−1/4
exp

(
−1− (2i/h̄)σ 2

pq

4σ 2
q

q2

)
. (5.13)

For ν(t) given by (5.12), the operator̂G is

Ĝ = − i

h̄

[
p̂2

2m
+ V̂ (q̂ + q(t), t)− 〈φ|∂qV̂ (q̂ + q(t), t)|φ〉q̂ − µ(t)− p(t)

2

2m
+ γ

2
p(t)q(t)

+ γ
2
(p̂q̂ + q̂p̂)− 2κσ 2

q σ
2
pq

]
− κ(q̂2− σ 2

q

)+ 1

2
F̂ 2. (5.14)

This can be made time independent with a proper choice ofµ(t) only for linear systems.
AssumingV (q, t) = v0(t)+ v1(t)q + 1

2mω
2
0q

2 with ω0 constant, we have

V̂ (q̂ + q(t), t)− 〈φ|∂qV̂ (q̂ + q(t), t)|φ〉q̂ = V (q(t), t)+ 1
2mω

2
0q̂

2 (5.15)

so that by choosing

µ(t) = ε − p(t)
2

2m
+ V (q(t), t)+ γ

2
p(t)q(t) (5.16)

the equationĜ|φ〉 = 0 becomes[
p̂2

2m
+ 1

2
mω2

0q̂
2+ γ

2
(p̂q̂ + q̂p̂)− 2κσ 2

q σ
2
pq − ih̄κ

(
q̂2− σ 2

q

)]|φ〉 = ε|φ〉. (5.17)

In the position representation and usingφ(q) given by (5.13), equation (5.17) is equivalent
to the following two complex equations:

− h̄
2

2m

(
1− (2i/h̄)σ 2

pq

2σ 2
q

)2

+ mω
2
0

2
+ ih̄γ

2

1− (2i/h̄)σ 2
pq

σ 2
q

− ih̄κ = 0 (5.18)

h̄2

2m

1− (2i/h̄)σ 2
pq

2σ 2
q

− ih̄γ

2
− 2κσ 2

q σ
2
pq + ih̄κσ 2

q = ε. (5.19)

Equation (5.18) gives two conditions for the determination ofσ 2
q andσ 2

pq . The constantε
can be then evaluated from the real part of (5.19), the imaginary part being an identity. The
solutions are

σ 2
q =

√√√√γ 2− ω2
0 +

√
(γ 2− ω2

0)
2+ (2h̄κ/m)2

8κ2
(5.20)

σ 2
pq =

√
m2(γ 2− ω2

0)σ
4
q + 1

4h̄
2−mγσ 2

q (5.21)

and

ε = h̄2

4mσ 2
q

− 2κσ 2
q σ

2
pq. (5.22)

The variancesσ 2
q andσ 2

pq are always real and positive except forkBT/h̄ω0 � 1 which is,
however, outside the range of validity of (3.37). According to the choices (5.12) and (5.16),
we finally have

dϕ(t) =
[
ε + p(t)

2

2m
+ V (q(t), t)+ γ

2
p(t)q(t)

]
dt − p(t) dq(t). (5.23)
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This allows an interpretation ofε in terms of a zero-point energy which adds to the classical
renormalized HamiltonianH(p(t), q(t), t)+ 1

2γp(t)q(t).
In theγ → 0 limit, we haveσ 2

q = h̄/2mω0, σ 2
pq = 0 andε = h̄ω0/2. The stationary state

of (5.13) becomes the ground state|φ0〉 of an unmeasured harmonic oscillator with frequency
ω0. In analogy with (5.1), the coherent states in presence of a continuous measurement are
then defined as

|p′q ′〉 = e−(i/h̄)q
′p̂ e(i/h̄)p

′q̂ |φ〉 (5.24)

which, in the position representation, becomes

〈q|p′q ′〉 = (2πσ 2
q

)−1/4
exp

[
−1− (2i/h̄)σ 2

pq

4σ 2
q

(q − q ′)2+ i

h̄
p′(q − q ′)

]
(5.25)

with σ 2
q andσ 2

pq given by (5.20) and (5.21), respectively. The states|p′q ′〉 of equation (5.24)
have the same properties of the usual coherent states [27]. In particular, they form an
overcomplete basis with the completeness relationship∫

dp′ dq ′

2πh̄
|p′q ′〉〈p′q ′| = 1̂ (5.26)

and overlaps

〈p′q ′|p′′q ′′〉 = exp

[
−Cp′−p′′q ′−q ′′ + i

h̄

p′ + p′′
2

(q ′ − q ′′)
]

(5.27)

where

Cp′−p′′q ′−q ′′ =
σ 2
q

2h̄2

[
(p′ − p′′)− σ

2
pq

σ 2
q

(q ′ − q ′′)
]2

+ 1

8σ 2
q

(q ′ − q ′′)2. (5.28)

Suppose that a quantum system, not necessarily a linear one, is prepared at timet in
the coherent state|p(t)q(t)〉. To leading order in ¯h, we have

σ 2
q =

√
h̄3

8m2γ kBT
(5.29)

and

σ 2
pq = 1

2h̄. (5.30)

We also have

σ 2
p = 〈p(t)q(t)|p̂2|p(t)q(t)〉 − 〈p(t)q(t)|p̂|p(t)q(t)〉2 = 〈φ|p̂2|φ〉

=
1
4h̄

2+ σ 4
pq

σ 2
q

= h̄2

2σ 2
q

=
√

2m2h̄γ kBT . (5.31)

Note that these expressions are independent ofω0†. Since σ 2
p , σ 2

q and σ 2
pq vanish for

h̄ → 0, in this limit the expectation valuesp(t) = 〈p(t)q(t)|p̂|p(t)q(t)〉 and q(t) =
† Equations (5.29) and (5.30) are also the leading-order terms of equations (5.6) and (5.7) with respect to the small
parameter ¯hγ/kBT . They correspond to the particular caseV (x) = 0 andb = 0 given in [19, equation (3.27)]
In that paper the definitions ofγ and of the Wiener process are different from ours and this implies different
numerical factors which, however, cancel out in these simplified expressions ofσ 2

p , σ 2
pq andσ 2

q .
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〈p(t)q(t)|q̂|p(t)q(t)〉 can be interpreted as classical phase-space coordinates. In a selective
measurement, their change is given by equations (5.4) and (5.5):

dp(t) = −[γp(t)+ 〈p(t)q(t)|∂qV̂ (q̂, t)|p(t)q(t)〉] dt +
√

2mγkBT dwξ(t) (5.32)

dq(t) = p(t)

m
dt +

√ h̄
m
−
√

h̄2γ

8mkBT

 dwξ(t). (5.33)

For h̄ → 0, the expectation value〈p(t)q(t)|∂qV̂ (q̂, t)|p(t)q(t)〉 can be replaced with
∂qV (q(t), t) and we recover the classical Langevin equations (2.12) and (2.13).

In the case of a non-selective measurement, the ¯h → 0 limit is properly discussed in
terms of the Wigner function related to the reduced density matrix operator through the
transformation

W(p, q, t) = 1

2πh̄

∫
dz exp

(
i

h̄
pz

)
〈q − 1

2z|%̂(t)|q + 1
2z〉. (5.34)

Suppose that at timet the measured system is described by the density matrix obtained by
averaging the state|p(t)q(t)〉 over all noise realizations, i.e. all possible values ofp(t) and
q(t) specified by a certain distribution function such that Tr%̂(t) = 1:

ρ̂(t) = |p(t)q(t)〉〈p(t)q(t)| =
∫

dp′ dq ′ δ(p′ − p(t))δ(q ′ − q(t)) |p′q ′〉〈p′q ′|. (5.35)

The corresponding Wigner function is

W(p, q, t) =
∫

dp′ dq ′ δ(p′ − p(t))δ(q ′ − q(t)) Wp′q ′(p, q) (5.36)

where

Wp′q ′(p, q) = 1

2πh̄

∫
dz exp

(
i

h̄
pz

)
〈q − 1

2z|p′q ′〉〈p′q ′|q + 1
2z〉

= 1

πh̄
exp

{
−2σ 2

q

h̄2

[
(p − p′)− σ

2
pq

σ 2
q

(q − q ′)
]2

− 1

2σ 2
q

(q − q ′)2
}
. (5.37)

Since

lim
h̄→0

Wp′q ′(p, q) = δ(p − p′)δ(q − q ′) (5.38)

in the h̄ → 0 limit W(p, q, t) reduces to the classical probability density
δ(p − p(t))δ(q − q(t)) obtained by averaging the sharp densityδ(p − p(t))δ(q − q(t))
over all acceptable phase-space pointsp(t), q(t). Finally, the equation of motion of the
Wigner function, obtained from equation (3.36) with standard manipulations [29], is

∂tW(p, q, t) =
[
− p
m
∂q +

∞∑
n=0

(
h̄

2i

)2n 1

(2n+ 1)!
∂2n+1
q V (q, t)∂2n+1

p

+ ∂p
(
γp +mγkBT ∂p

)+ h̄2γ

16mkBT
∂2
q

]
W(p, q, t) (5.39)

so that, in the ¯h→ 0 limit, the change ofW(p, q, t) coincides with that prescribed by the
classical Fokker–Plank equation (2.14).
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6. Measurements on macroscopic systems

One of the principal drawbacks of the von Neumann measurement theory is the impossibility
of predicting a quantum-to-classical transition in the macroscopic limit, unless the state
|ψ(t ′)〉 of the system at the beginning of the measurement is one of the coherent states
(5.1). On the other hand, when the size of the system is sufficiently large, i.e. in the formal
h̄ → 0 limit, we must always recover the result of a classical measurement. It is now
clearly established that the entanglement of the measured system with the infinitely many
degrees of freedom of the measurement apparatus can provide superselection rules which
avoid paradoxical quantum features at macroscopic level [4, 5].

Concerning the measurement model discussed here, the existence of a superselection
rule of this kind can be demonstrated in a general way in the case of linear systems.
Halliwell and Zoupas have shown, in a statistical sense first [19] and with a more direct
approach but in the free-particle case and dissipationless limit later [30], that the solutions
of equation (3.37) converge to a coherent state characterized by time-dependent parameters
p(t) and q(t) which are the expectation values ofp̂ and q̂ in the state itself. Here, we
generalize the result of [30] by showing that the solutions of equation (3.37) with potential

V = v0(t)+ v1(t)q + 1
2mω

2
0q

2 (6.1)

in the long-time limit become of the form

|ψ[ξ ](t)〉 = exp

[
− i

h̄
ϕ(t)

]
|p(t)q(t)〉 (6.2)

wherep(t) = 〈ψ[ξ ](t)|p̂|ψ[ξ ](t)〉, q(t) = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉 and ϕ(t) and |p(t)q(t)〉 are
given by equations (5.23) and (5.24), respectively.

The Green function corresponding to the nonlinear equation (3.37)

G[ξ ](q, t; q ′, t ′) =
∫

d[p] d[q]q,tq ′,t ′ exp

{
i

h̄

∫ t

t ′
ds

[
pq̇ − p2

2m
− V − γpq + γp〈q̂〉

− γ
2
〈p̂〉〈q̂〉 + ih̄κ(q − 〈q̂〉)2− ih̄

√
κ(q − 〈q̂〉)ξ

+ γ

2
√
κ
(p − 〈p̂〉)ξ

]}
(6.3)

depends functionally on the state|ψ[ξ ](t)〉 through the expectation values〈p̂〉 =
〈ψ[ξ ](t)|p̂|ψ[ξ ](t)〉 and 〈q̂〉 = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉. If we suppose, for the moment, that
these functions and the noiseξ are given, forV of the form (6.1) the Green function (6.3)
is that of a linear system with Lagrangian

L(q, q̇, t) = 1
2mq̇

2− 1
2mω

2q2−mγqq̇ + f (t)q + g(t)q̇ + h(t) (6.4)

where

ω2 = ω2
0 − γ 2− 2ih̄κ

m
(6.5)

and f (t), g(t) andh(t) are given in terms of〈p̂〉, 〈q̂〉, ξ , v0 and v1. By performing the
Gaussian functional integrals in equation (6.3), we obtain

G[ξ ](q, t; q ′, t ′) = n(t, t ′) exp

{
i

h̄

[
g(t)q − g(t ′)q ′ − 1

2
mγq2+ 1

2
mγq ′2

+ Scl(q, t; q ′, t ′)
]}

(6.6)
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wheren(t, t ′) does not depend on the spatial variables and

Scl(q, t; q ′, t ′) = 1

sin[ω(t − t ′)]
{
mω

2
cos[ω(t − t ′)](q2+ q ′2)−mωqq ′

+ q
∫ t

t ′
ds [f (s)− ġ(s)] sin[ω(s − t ′)]

+ q ′
∫ t

t ′
ds [f (s)− ġ(s)] sin[ω(t − s)]

− 1

mω

∫ t

t ′
ds [f (s)− ġ(s)] sin[ω(t − s)]

×
∫ s

t ′
du [f (u)− ġ(u)] sin[ω(u− t)]

}
(6.7)

is the classical action of a driven harmonic oscillator of massm, frequencyω and external
force f − ġ, evaluated with boundary conditionsq(t ′) = q ′ and q(t) = q [31]. The
frequencyω is complex with real and imaginary parts given by

Re(ω) = ± h̄

2m

√√√√ 8κ2

γ 2− ω2
0 +

√
(γ 2− ω2

0)
2+ (2h̄κ/m)2

= ± h̄

2mσ 2
q

(6.8)

Im(ω) = ∓
√
γ 2− ω2

0 +
(

h̄

2mσ 2
q

)2

. (6.9)

For (t−t ′)| Im(ω)| � 1, the coefficient of theqq ′ term in the action (6.7) vanishes while the
coefficient of(q2+ q ′2) becomes±imω/2. In the long-time limit, therefore, the propagator
(6.6) becomes independent of the initial conditions and the solutions of equation (3.37) can
be written as

ψ[ξ ](q, t) =
∫

dq ′ G[ξ ](q, t; q ′, t ′) ψ(q ′, t ′)

= exp

[
− m

2h̄

(±ω + iγ
)
q2+ α(t)q + β(t)

]

= exp

[
−1− (2i/h̄)σ 2

pq

4σ 2
q

q2+ α(t)q + β(t)
]

(6.10)

where we used

−h̄ Im(ω)

2 Re(ω)
∓ h̄γ

2 Re(ω)
=
√
m2(γ 2− ω2

0)σ
4
q +

h̄2

4
−mγσ 2

q = σ 2
pq. (6.11)

The complex functionsα(t) andβ(t) are to be determined. First of all, the normalization
of the wavefunction (6.10) implies that

1= (2πσ 2
q )

1/2 exp
{
2 Re[β(t)] + 2σ 2

q Re[α(t)]2
}
. (6.12)

Then, we can impose two self-consistency conditions involving the expectation values ofp̂

and q̂ in the state (6.10)

p(t) = 〈ψ[ξ ](t)|p̂|ψ[ξ ](t)〉 = h̄ Im[α(t)] + 2σ 2
pq Re[α(t)] (6.13)
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and

q(t) = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉 = 2σ 2
q Re[α(t)]. (6.14)

By using the expressions so obtained for Re[α(t)], Im[α(t)] and Re[β(t)], the wavefunction
(6.10) can be rewritten as

ψ[ξ ](q, t) = (2πσ 2
q )
−1/4 exp

{
−1− (2i/h̄)σ 2

pq

4σ 2
q

[q − q(t)]2+ i

h̄
p(t)[q − q(t)] − i

h̄
ϕ(t)

}
(6.15)

where

ϕ(t) = −h̄ Im[β(t)] − p(t)q(t)+ σ 2
pq

2σ 2
q

q(t)2. (6.16)

The actionϕ(t) evolves according to an equation obtained by imposing that the change of
ψ[ξ ](q, t) in a time dt is given by (3.37). Since the wavefunction (6.15) is of the form (5.2),
the differential dϕ(t) is given by (5.23). This completes the convergence proof.

To the leading order in ¯h, the characteristic time which determines the convergence of
ψ[ξ ](q, t) to the wavefunction (6.15) is given by

1

| Im(ω)| =
√

h̄

γ kBT
. (6.17)

The convergence becomes infinitely fast for ¯h → 0. On the base of this result and of
the properties of the coherent states discussed in section 5, we can conclude that during
a measurement, selective or non-selective, the ¯h → 0 limit does exist at any timet > t ′

even if it does not exist att = t ′. As an example of this behaviour, in appendix B
we explicitly evaluate the ¯h → 0 limit in the case of non-selective measurements on
a free-particle cat state. The discontinuity att = t ′ is, of course, an artifact of the
instantaneous correlation assumed through equation (3.3) between the measured system
and the measurement apparatus and it would disappear in a more physical approach in
which such correlation is established in a finite time.

In the case of nonlinear systems, terms higher than quadratic appear in the potential of
the Lagrangian (6.4) so that the convergence proof given for linear systems does not apply.
However, due to the linearity of the interaction with the infinitely many oscillators of the
measurement apparatus, the leading ¯h term of this potential, i.e.

−ih̄κq2 = −i
2mγkBT

h̄
q2 (6.18)

is a quadratic one with complex frequency
√−4iγ kBT/h̄. As a consequence, in the

h̄ → 0 limit the state of the system acquires the form (6.15) withσq and σpq given by
equations (5.29) and (5.30). The recovery of classical behaviour in the macroscopic limit
is, therefore, obtained independently of the nature of the measured system. Numerical
examples of this result can be found in [32–34] and experimental evidence has recently
been reported in [35].

After the completion of this paper, we became aware of a preprint by Strunz and
Percival [36] in which the authors discuss the semiclassical behaviour of open quantum
systems described by a general Lindblad master equation.
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Appendix A. Positivity and Markovian evolution of %̂

Violations of the positivity of%̂(t) may arise due to inappropriate approximations of the
exact influence functional (3.12). Examples of exact solution of%̂(t) with no positivity
violations have been given in [37] in the case of a harmonic oscillator.

In the framework of a theory of measurement processes, the requirement that the meter
has classical behaviour with respect to the observer imposes ¯h� � kBT , if the frequency
distribution (2.10) is assumed. In this case, the fluctuation kernel

3(s − u) = mγ

πh̄

∫ �

0
dω ω coth

(
h̄ω

2kBT

)
cos[ω(s − u)]

= kBT

h̄2 0(s − u)−
1

12kBT
0̈(s − u)+ · · · (A.1)

has a high-temperature expansion whose leading term0kBT/h̄
2 is proportional to the

dissipation kernel

0(t − s) ' 2mγδ(t − s) (A.2)

which is Markovian for�−1 � τ , τ being the fastest time scale of the classical motion.
When these approximations are made in (3.12), so that equation (3.15) and the corresponding
master equation (3.18) are obtained, violations of positivity of%̂(t) may occur as in the
example pointed out in [38]. However, this happens on a time scale shorter than ¯h/kBT ,
i.e. outside the range of validityτ � �−1� h̄/kBT of equation (3.18) [37]. In this range,
the substantial positivity of̂%(t) can be made apparent by selecting appropriate dominant
terms.

Equation (3.15) shows that the dissipation term is negligible in comparison with the
fluctuation term when

mγkBT q
2
1

h̄2 � γ q1p6

2h̄
(A.3)

where q1 = q1 − q2 and p6 = p1 + p2. The functionsq1 and p6 may assume any
value according to the functional measure (3.11). However, close to the dominant classical
path we havep6 . 2mq1/τ and the condition (A.3) can be restated askBT/h̄ � τ−1.
Therefore, in the working rangeτ � �−1 � h̄/kBT dissipation can be neglected with
respect to fluctuation and equation (3.15) becomes

Z[q1, q2] =
∫ t

t ′
ds
mγ kBT

h̄2

[
q1(s)− q2(s)

]2
. (A.4)

Correspondingly, the non-selective measurement processes are described by the master
equation

d

dt
%̂(t) = − i

h̄

[
Ĥ (p̂, q̂, t), %̂(t)

]− mγkBT

h̄2

[
q̂,
[
q̂, %̂(t)

]]
. (A.5)
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This is a Markovian evolution of Lindblad class and therefore (completely) positive [26].
The associated selective processes are described in terms of a single state satisfying the
stochastic Schrödinger equation

d|ψ[ξ ](t)〉 = − i

h̄
Ĥ (p̂, q̂, t)|ψ[ξ ](t)〉 dt − mγkBT

h̄2

[
q̂ − q(t)]2|ψ[ξ ](t)〉 dt

+
√

2mγkBT

h̄2

[
q̂ − q(t)]|ψ[ξ ](t)〉 dwξ(t) (A.6)

with q(t) = 〈ψ[ξ ](t)|q̂|ψ[ξ ](t)〉. The general results of [9] are recovered by setting
2mγkBT/h̄

2 = κ.
At the classical level, the Fokker–Plank equation (2.14) and the Langevin equations

(2.12) and (2.13) are consistent with the fluctuation–dissipation theorem [23]. Equations
(A.5) and (A.6), in which dissipation is neglected, are therefore not appropriate for
recovering the classical limit. New quantum equations are to be introduced which include
dissipation and, at the same time, guarantee the positivity of%̂(t). As shown in section 3, this
is accomplished by rewriting equation (3.15) in the equivalent form (3.21) and neglecting
theB terms with respect to theA ones on the basis of the working condition ¯h/kBT � τ .
Dissipation is still contained in the remaining influence functional which gives rise to the
master equation (3.36) of Lindblad class and to the corresponding stochastic Schrödinger
equation (3.37). These equations provide the correct classical limit as shown in section 5.

We conclude with some remarks about the possibility pointed out in [39, 40] of obtaining
a master equation of Lindblad class by taking into account the next to leading term in (A.1).
In this case, equation (3.15) would become

Z[p1, q1, p2, q2] =
∫ t

t ′
ds

{
mγkBT

h̄2

[
q1(s)− q2(s)

]2+ iγ

2h̄

[
q1(s)− q2(s)

][
p1(s)+ p2(s)

]}

−
∫ t

t ′
ds
∫ s

t ′
du

1

12kBT

[
q1(s)− q2(s)

]
0̈(s − u)[q1(u)− q2(u)

]
+ · · · . (A.7)

The new term can be more easily analysed after integration by parts. By settingq1 = q1−q2,
we have∫ t

t ′
ds
∫ s

t ′
du q1(s)0̈(s − u)q1(u) = 1

2

∫ t

t ′
ds
∫ t

t ′
du q̈1(s)0(s − u)q1(u)

− 1

2
0(0)

[
q1(t)

2+ q1(t ′)2
]+ 0(t − t ′)q1(t)q1(t ′)

+ 1

2

∫ t

t ′
du 0(t − u)[q1(t)q̇1(u)− q1(u)q̇1(t)]

+ 1

2

∫ t

t ′
du 0(t ′ − u)[q1(u)q̇1(t ′)− q1(t ′)q̇1(u)]. (A.8)

For t − t ′ � �−1, the last three terms can be neglected and the first can be approximated
with a single integral:

1

2

∫ t

t ′
ds q1(s)q̈1(s) = 1

2
q1(t)q̇1(t)− 1

2
q1(t

′)q̇1(t ′)− 1

2

∫ t

t ′
ds q̇1(s)

2. (A.9)
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By using the identity

1

2

[
q1(t)

2+ q1(t ′)2
] = q1(t ′)2+ 1

2

∫ t

t ′
ds q1(s)q̇1(s) (A.10)

equation (A.8) can be rewritten† as∫ t

t ′
ds
∫ s

t ′
du q1(s)0̈(s − u)q1(u) = 2mγ

{
1

2

[
q1(t)q̇1(t)− q1(t ′)q̇1(t ′)

]
− 1

2

∫ t

t ′
ds q̇1(s)

2− �
π
q1(t

′)2− �
π

∫ t

t ′
ds q1(s)q̇1(s)

}
. (A.11)

In [39, 40] the first term of equation (A.11) is neglected by observing that it is much
smaller than the third. In this case the reduced density matrix operator%̂(t) would undergo
a transient change

%(q1, q2, 0)→ exp

{
− 2mγ�

12πkBT

[
q1(t

′)− q2(t
′)
]2
}
%(q1, q2, 0) (A.12)

followed by a Lindblad evolution described by an equation which reduces to (3.36) in the
h̄ → 0 andT → ∞ limits. The validity of these findings is, however, questionable. The
surface terms neglected in (A.11) are of the same order as the integral of1

2 q̇
2
1 which is,

conversely, maintained.
The existence of a transient change in the evolution of the reduced density matrix

merits further comment. If the system and the measurement apparatus are initially non-
interacting, a change of̂%(t) at the switching-on of the interaction is plausible. However, as
we explained in section 2, this transient cannot be described in the framework of a model,
such as the bath of harmonic oscillators, in which the system and the measurement apparatus
are always in interaction. We must limit our considerations to a non-transient evolution and,
correspondingly, assume that the system and the meter are correlated from the beginning.

The drawbacks of [39, 40] have also been underlined recently in [41]. As in [21] and
the present work, the authors of [41] assume an initial correlation between the system and
the environment.

Appendix B. Non-selective measurements on a free-particle cat state

Let us consider a free quantum particle which, at the beginning of the measurement, is in
the superposition (cat) state

|ψ(t ′)〉 = N[|p1q1〉 + |p2q2〉
]

(B.1)

where |piqi〉, i = 1, 2, are two coherent states (5.24) withω0 = 0 and the normalization
factor is

N = 1√
2
[
1+ exp(−Cp1−p2q1−q2)

] . (B.2)

The initial state (B.1) has no classical counterpart. The ¯h→ 0 limit of the corresponding
Wigner function

W(p, q, t ′) = N2

{
Wp1q1(p, q)+Wp2q2(p, q)+Wp1+p2

2
q1+q2

2
(p, q)

× 2 cos

[
p

h̄
(q1− q2)− p1− p2

h̄

(
q − q1+ q2

2

)]}
(B.3)

† Note that our definition ofγ is twice that used in [39, 40].
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whereWp′q ′(p, q) is given by equation (5.37), does not exist. The situation changes during
the measurement. In the case of a non-selective process, the system is described by a
Wigner functionW(p, q, t) which can be evaluated exactly by solving equation (5.39) with
the initial condition (B.3)†. The result is

W(p, q, t) = N2

{
Wp1q1(p, q, t)+Wp2q2(p, q, t)

+Wp1+p2
2

q1+q2
2
(p, q, t)exp

(−Cp1−p2q1−q2 +6p1−p2q1−q2(t)
)

× 2 cos

[
p1+ p2

2h̄
(q1− q2)+ϒp1−p2q1−q2(t)

(
p − p1+ p2

2
e−γ (t−t

′)
)

+8p1−p2q1−q2(t)

(
q − q1+ q2

2
− p1+ p2

2mγ

(
1− e−γ (t−t

′)))]} (B.4)

where

Wp′q ′(p, q, t) = 1

2π
√

4Cxx(t)Cyy(t)− Cxy(t)2

× exp

{
− Cxx(t)

4Cxx(t)Cyy(t)− Cxy(t)2
[
q − q ′ − p′

mγ

(
1− e−γ (t−t

′))]2

+ Cxy(t)

4Cxx(t)Cyy(t)− Cxy(t)2
[
q − q ′ − p′

mγ

(
1− e−γ (t−t

′))][p − p′e−γ (t−t ′)]
− Cyy(t)

4Cxx(t)Cyy(t)− Cxy(t)2
[
p − p′e−γ (t−t ′)]2

}
(B.5)

6p′q ′(t) =
Cxx(t)C

y

p′q ′(t)
2− Cxy(t)Cxp′q ′(t)Cyp′q ′(t)+ Cyy(t)Cxp′q ′(t)2

4Cxx(t)Cyy(t)− Cxy(t)2 (B.6)

ϒp′q ′(t) =
2Cyy(t)Cxp′q ′(t)− Cxy(t)Cyp′q ′(t)

4Cxx(t)Cyy(t)− Cxy(t)2 (B.7)

and

8p′q ′(t) =
2Cxx(t)C

y

p′q ′(t)− Cxy(t)Cxp′q ′(t)
4Cxx(t)Cyy(t)− Cxy(t)2 (B.8)

are given in terms of the coefficients

Cxx(t) = h̄mγ
{

1

2

h̄

mγ σ 2
q

(
1

4
+ σ

4
pq

h̄2

)
e−2γ (t−t ′) + 1

2

kBT

h̄γ

[
1− e−2γ (t−t ′)]} (B.9)

Cxy(t) = h̄
{

h̄

mγ σ 2
q

(
1

4
+ σ

4
pq

h̄2

)[
1− e−γ (t−t

′)]e−γ (t−t ′) + σ 2
pq

h̄
e−γ (t−t

′)

+ kBT

h̄γ

[
1− 2e−γ (t−t

′) + e−2γ (t−t ′)]} (B.10)

† By Fourier transforming equation (5.39) with respect top andq, one obtains a quasi-linear partial differential
equation which can be solved by standard methods [42].
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Cyy(t) = h̄

mγ

{
1

2

mγσ 2
q

h̄

[
1+ σ 2

pq

mγσ 2
q

[
1− e−γ (t−t

′)]]2

+ 1

8

h̄

mγ σ 2
q

[
1− e−γ (t−t

′)]2

+ kBT

h̄γ

[
γ (t − t ′)− 3

2
+ 2e−γ (t−t

′) − 1

2
e−2γ (t−t ′)

]

+ 1

16

h̄γ

kBT
γ (t − t ′)

}
(B.11)

Cxp′q ′(t) = p′
σ 2
pq

h̄
e−γ (t−t

′) − q ′ h̄
σ 2
q

(
1

4
+ σ

4
pq

h̄2

)
e−γ (t−t

′) (B.12)

C
y

p′q ′(t) = p′
σ 2
q

h̄

{
1+ h̄

mγ σ 2
q

σ 2
pq

h̄

[
1− e−γ (t−t

′)]}

− q ′
{

h̄

mγ σ 2
q

(
1

4
+ σ

4
pq

h̄2

)[
1− e−γ (t−t

′)]+ σ 2
pq

h̄

}
. (B.13)

The indicesx andy stand for the Fourier variables conjugated withp andq, respectively.
Each term of (B.4) is localized within a phase-space region whose size grows with time.
When this size has became much larger thanσpσq ∼ h̄, we can write∫

dp′ dq ′ W(p′, q ′, t) Wp′q ′(p, q) ' W(p, q, t) (B.14)

and identify the weightsδ(p − p(t))δ(q − q(t)) of equation (5.36) withW(p, q, t) in
agreement with [30].

Let us now turn to the classical limit of (B.4). First, we note thatWp′q ′(p, q, t) is the
time evolution of the Wigner function (5.37) corresponding to the coherent state|p′q ′〉. Its
classical limit exists and is given by an expressionW cl

p′q ′(p, q, t) identical to (B.5) with
Cxx(t), Cxy(t) andCyy(t) replaced by

Ccl
xx(t) = lim

h̄→0
Cxx(t) = 1

2mkBT
[
1− e−2γ (t−t ′)] (B.15)

Ccl
xy(t) = lim

h̄→0
Cxy(t) = kBT

γ

[
1− 2e−γ (t−t

′) + e−2γ (t−t ′)] (B.16)

Ccl
yy(t) = lim

h̄→0
Cyy(t) = kBT

mγ 2

[
γ (t − t ′)− 3

2
+ 2e−γ (t−t

′) − 1

2
e−2γ (t−t ′)

]
. (B.17)

The functionW cl
p′q ′(p, q, t) is the phase-space probability density obtained by solving the

Fokker–Plank equation (2.14) with initial conditionW cl
p′q ′(p, q, t

′) = δ(p − p′)δ(q − q ′).
Concerning the interference term in equation (B.4), we have6p′q ′(t

′) = Cp′q ′ ,
ϒp′q ′(t

′) = q ′/h̄ and8p′q ′(t ′) = −p′/h̄ so that, as previously noted, the ¯h → 0 limit
of this term does not exist att = t ′ due to the undamped oscillation of the cosine. On
the other hand, fort > t ′ since6p′q ′(t) = O(h̄−1) while Cp′q ′ = O(h̄−3/2) we have an
exponentially damping term which allows to obtain

lim
h̄→0

W(p, q, t) = 1
2

[
W cl
p1q1

(p, q, t)+W cl
p2q2

(p, q, t)
]
. (B.18)

From a physical point of view, this limit is equivalent to a macroscopic one in which
|p1 − p2|/σp and/or |q1 − q2|/σq become infinitely large so thatCp1−p2q1−q2 diverges. In
particular, this is obtained by taking the massm of the particle infinitely large.
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Finally, we note that due to the condition ¯hγ � kBT the Wigner functionWp′q ′(p, q, t)

approaches the classical phase-space probability densityW cl
p′q ′(p, q, t) on a time scale

(h̄/γ kBT )
1/2 � γ−1†. On the other hand, the functions6p′q ′(t), ϒp′q ′(t) and 8p′q ′(t)

vanish fort →∞. The long-time limit of equation (B.4) is therefore

W∞(p, q, t) = N2

{
W cl
p1q1

(p, q, t)+W cl
p2q2

(p, q, t)+W cl
p1+p2

2
q1+q2

2
(p, q, t)

× e−Cp1−p2q1−q2 2 cos

[
p1+ p2

2h̄
(q1− q2)

]}
(B.19)

and never coincides with the classical limit (B.18).
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